Las baterías de los coches eléctricos permitirán una autonomía de unos 1.300 kilómetros

Con la baterías compactas de estado sólido se espera conseguir un aumento de la densidad energética de hasta el 50%
S22_0897_fine
Baterías eléctricas - -

Alto contenido energético, alto rendimiento, larga vida útil y máxima seguridad, todo ello al menor coste posible. Las baterías de los vehículos eléctricos tienen que cumplir muchos requisitos, que la tecnología de iones de litio dominante ya satisface. Sin embargo, es posible mejorar aún más casi todos sus parámetros. Los investigadores y la industria trabajan intensamente en ello. Al mismo tiempo, los posibles sucesores ya están en ciernes. No es casualidad que las baterías de iones de litio dominen el mercado actual: los átomos de litio son especialmente propensos a emitir uno de sus tres electrones y el litio es el metal más ligero. Esto convierte al elemento en una materia prima muy adecuada para las baterías.

"El litio puro es el material de ánodo activo ideal en términos de densidad energética", afirma Stefanie Edelberg, ingeniera especialista en celdas de baterías de Porsche Engineering. "Sin embargo, por razones de seguridad, en la actualidad los grafitos se utilizan principalmente como materiales activos del ánodo que pueden absorber iones de litio". Además, la capacidad de carga de las baterías es muy alta y su precio es relativamente bajo. A esto hay que añadir su larga vida útil: "entre 1.500 y 3.000 ciclos de carga completa hasta alcanzar una capacidad residual del 80% no suponen ningún problema", afirma Falko Schappacher, director comercial y técnico del centro de investigación de baterías MEET de la Universidad de Münster (WWU). Actualmente se prevén vidas útiles de las baterías de coche de hasta un millón de kilómetros.

Como la tecnología de iones de litio es un sistema multicomponente, hay muchas formas de optimizarla aún más. Tomemos, por ejemplo, el ánodo: actualmente se utiliza grafito como material activo del ánodo. El silicio es una alternativa interesante porque ofrece una capacidad de almacenamiento diez veces mayor. "Los ánodos de silicio aumentarían significativamente la capacidad total de la batería de iones de litio", como subraya Schappacher. Edelberg también señala sus ventajas: "El silicio es de especial interés porque presenta la segunda mayor capacidad de almacenamiento en términos de peso después del litio, lo que permite celdas con densidades de energía muy altas. Además, es el segundo elemento más común de la corteza terrestre". Las celdas con una gran capacidad de carga rápida y que pueden pasar del 5 al 80% en menos de 15 minutos son realmente factibles.

"Sin embargo, cuando se absorbe el litio, las partículas de silicio se expanden un 300%, lo que provoca tensiones mecánicas en el material y el electrodo", explica Schappacher. Si esto dañara las superficies del electrodo, la vida útil de la batería también se vería mermada. "La mayor ventaja en términos de densidad energética se consigue utilizando material activo de silicio puro, pero entonces también hay que enfrentarse a los peores inconvenientes en términos de vida útil", afirma Edelberg. No obstante, se está trabajando intensamente en ánodos con una proporción muy elevada de silicio, de hasta el 80%. Este es el camino que está siguiendo Cellforce, por ejemplo, en colaboración con Porsche.

Más níquel en el cátodo

También se está trabajando intensamente en la optimización de los materiales activos para el cátodo. Lo importante en este caso es la combinación de una gran capacidad de carga y un elevado potencial electroquímico del material. En la actualidad, el óxido de litio-níquel-cobalto-manganeso (NCM) en una proporción de 6:2:2 (proporción de níquel, cobalto y manganeso) es el más utilizado en electromovilidad en Europa.

En el futuro, es probable que aumente la proporción del níquel, mientras que el cobalto y el manganeso se utilizarán en menor medida. La creciente proporción del níquel puede hacer posible una mayor capacidad de carga. El separador es otro elemento con potencial de optimización. Consiste en láminas muy finas (de 10 a 20 micrómetros), en su mayoría de polietileno o polipropileno. Este separador ahorra espacio y peso. "El separador puede contribuir indirectamente al contenido energético de una celda de batería", dice Edelberg. "Cuanto más fino es, más capas o bobinas de electrodos caben en una celda. Esto aumenta su capacidad y contenido energético".

"A medio plazo, podemos esperar que la combinación de la nueva química de ánodos y el denso empaquetado de las celdas permita una autonomía del vehículo de 1.300 kilómetros", afirma Fichtner. Schappacher también es optimista, aunque sea difícil predecir el impacto de avances tecnológicos como la batería de estado sólido. "Creo que en el futuro veremos aumentos de entre el 30% y el 50% en la autonomía de los vehículos premium", espera el experto, y subraya: "más importante que el simple aumento de la autonomía es la capacidad de carga rápida". Schappacher confía en que, algún día, la carga rápida hasta el 80% de la autonomía del vehículo no lleve mucho más tiempo que una parada para repostar.

Recomendamos en

_DSC3062-copia

Los voluntarios de Cruz Roja se mueven en eléctrico

Pensado para todo tipo de usos profesionales, el Citroën My Ami, profundiza en su vocación de ser un vehículo eléctrico, práctico, polivalente y pensado para hacer la vida más fácil
  • José Manuel González